/*
......... 2015 Ivan Mahonin
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include "contour.h"
using namespace std;
const Vector Contour::blank;
void Contour::clear() {
if (!chunks.empty()) {
chunks.clear();
first = 0;
}
}
void Contour::move_to(const Vector &v) {
if (chunks.empty()) {
if (!v.is_equal_to(blank))
chunks.push_back(Chunk(MOVE, v));
} else {
if (!v.is_equal_to(chunks.back().p1)) {
if (chunks.back().type == MOVE)
chunks.back().p1 = v;
else
if (chunks.back().type == CLOSE)
chunks.push_back(Chunk(MOVE, v));
else {
chunks.push_back(Chunk(CLOSE, chunks[first].p1));
chunks.push_back(Chunk(MOVE, v));
}
}
}
first = chunks.size();
}
void Contour::line_to(const Vector &v) {
if (!v.is_equal_to(current()))
chunks.push_back(Chunk(LINE, v));
}
void Contour::conic_to(const Vector &v, const Vector &t) {
if (!v.is_equal_to(current()))
chunks.push_back(Chunk(CONIC, v, t));
}
void Contour::cubic_to(const Vector &v, const Vector &t0, const Vector &t1) {
if (!v.is_equal_to(current()))
chunks.push_back(Chunk(CUBIC, v, t0, t1));
}
void Contour::close() {
if (chunks.size() > first) {
if (first > 0)
chunks.push_back(Chunk(CLOSE, chunks[first-1].p1));
else
chunks.push_back(Chunk(CLOSE, blank));
first = chunks.size();
}
}
void Contour::line_split(
Rect &ref_line_bounds,
const Rect &bounds,
const Vector &min_size,
const Vector &p1 )
{
line_to(p1);
return;
// TODO: fix bugs
ref_line_bounds = ref_line_bounds.expand(p1);
if (bounds.intersects(ref_line_bounds)) {
Vector s = ref_line_bounds.p1 - ref_line_bounds.p0;
if ( fabs(s.x) > min_size.x
|| fabs(s.y) > min_size.y )
{
line_to(p1);
ref_line_bounds.p0 = p1;
ref_line_bounds.p1 = p1;
return;
}
}
if (!chunks.empty())
chunks.back().p1 = p1;
}
void Contour::conic_split(
Rect &ref_line_bounds,
const Rect &bounds,
const Vector &min_size,
const Vector &p1,
const Vector ¢er,
Real radius,
Real radians0,
Real radians1,
int level )
{
assert(level > 0);
const Vector &p0 = current();
if ( fabs(p1.x - p0.x) > min_size.x
|| fabs(p1.y - p0.y) > min_size.y )
{
Rect b = conic_bounds(p0, p1, center, radius, radians0, radians1);
if (bounds.intersects(b)) {
Real radians = 0.5*(radians0 + radians1);
Vector p( radius*cos(radians) + center.x,
radius*sin(radians) + center.y );
conic_split(ref_line_bounds, bounds, min_size, p, center, radius, radians0, radians, level - 1);
conic_split(ref_line_bounds, bounds, min_size, p1, center, radius, radians, radians1, level - 1);
return;
}
}
line_split(ref_line_bounds, bounds, min_size, p1);
}
void Contour::cubic_split(
Rect &ref_line_bounds,
const Rect &bounds,
const Vector &min_size,
const Vector &p1,
const Vector &bezier_pp0,
const Vector &bezier_pp1,
int level )
{
assert(level > 0);
const Vector &p0 = current();
if ( fabs(p1.x - p0.x) > min_size.x
|| fabs(p1.y - p0.y) > min_size.y )
{
Rect b = cubic_bounds(p0, p1, bezier_pp0, bezier_pp1);
if (bounds.intersects(b)) {
Vector pp = (bezier_pp0 + bezier_pp1)*0.5;
Vector pp00 = (p0 + bezier_pp0)*0.5;
Vector pp11 = (p1 + bezier_pp1)*0.5;
Vector pp01 = (pp00 + pp)*0.5;
Vector pp10 = (pp11 + pp)*0.5;
Vector p = (pp01 + pp10)*0.5;
cubic_split(ref_line_bounds, bounds, min_size, p, pp00, pp01, level - 1);
cubic_split(ref_line_bounds, bounds, min_size, p1, pp10, pp11, level - 1);
return;
}
}
line_split(ref_line_bounds, bounds, min_size, p1);
}
void Contour::split(Contour &c, const Rect &bounds, const Vector &min_size) const {
Rect line_bounds;
line_bounds.p0 = c.current();
line_bounds.p1 = c.current();
for(ChunkList::const_iterator i = chunks.begin(); i != chunks.end(); ++i) {
switch(i->type) {
case MOVE:
c.move_to(i->p1);
line_bounds.p0 = c.current();
line_bounds.p1 = c.current();
break;
case LINE:
c.line_split(line_bounds, bounds, min_size, i->p1);
break;
case CLOSE:
c.close();
break;
case CONIC:
{
const Vector &p0 = c.current();
Vector center;
Real radius = 0.0;
Real radians0 = 0.0;
Real radians1 = 0.0;
if (conic_convert(p0, i->p1, i->t0, center, radius, radians0, radians1))
c.conic_split(line_bounds, bounds, min_size, i->p1, center, radius, radians0, radians1);
else
c.line_split(line_bounds, bounds, min_size, i->p1);
}
break;
case CUBIC:
{
const Vector &p0 = c.current();
Vector pp0, pp1;
cubic_convert(p0, i->p1, i->t0, i->t1, pp0, pp1);
c.cubic_split(line_bounds, bounds, min_size, i->p1, pp0, pp1);
}
break;
}
}
}
bool Contour::conic_convert(
const Vector &p0,
const Vector &p1,
const Vector &t,
Vector &out_center,
Real &out_radius,
Real &out_radians0,
Real &out_radians1 )
{
Real tl = sqrt(t.x*t.x + t.y*t.y);
if (fabs(tl) < 1e-6) {
out_center = Vector();
out_radius = 0.0;
out_radians0 = 0.0;
out_radians1 = 0.0;
return false;
}
Vector d = p1 - p0;
Vector n(-t.y/tl, t.x/tl);
Real r = 0.5*(d.x*d.x + d.y*d.y)/(d.x*n.x + d.y*n.y);
out_center = p0 + n*r;
out_radius = fabs(r);
out_radians0 = atan2(p0.y - out_center.y, p0.x - out_center.x);
out_radians1 = atan2(p1.y - out_center.y, p1.x - out_center.x);
bool ccw = r > 0.0;
out_radians0 = wrap_angle(out_radians0, 2.0*M_PI);
out_radians1 = wrap_angle(out_radians1, 2.0*M_PI);
if (ccw) { if (out_radians1 < out_radians0) out_radians1 += 2.0*M_PI; }
else { if (out_radians1 > out_radians0) out_radians1 -= 2.0*M_PI; }
return true;
}
Rect Contour::conic_bounds(
const Vector &p0,
const Vector &p1,
const Vector ¢er,
Real radius,
Real radians0,
Real radians1 )
{
radius = fabs(radius);
Rect r;
r.p0 = p0;
r.p1 = p1;
if (angle_between(radians0, radians1, 0.0*M_PI, 2.0*M_PI))
r = r.expand(Vector(center.x + radius, center.y));
if (angle_between(radians0, radians1, 0.5*M_PI, 2.0*M_PI))
r = r.expand(Vector(center.x, center.y + radius));
if (angle_between(radians0, radians1, 1.0*M_PI, 2.0*M_PI))
r = r.expand(Vector(center.x - radius, center.y));
if (angle_between(radians0, radians1, 1.5*M_PI, 2.0*M_PI))
r = r.expand(Vector(center.x, center.y - radius));
return r;
}
void Contour::cubic_convert(
const Vector &p0,
const Vector &p1,
const Vector &t0,
const Vector &t1,
Vector &out_bezier_pp0,
Vector &out_bezier_pp1 )
{
out_bezier_pp0 = t0/3.0 + p0;
out_bezier_pp1 = p1 - t1/3.0;
}
Rect Contour::cubic_bounds(
const Vector &p0,
const Vector &p1,
const Vector &bezier_pp0,
const Vector &bezier_pp1 )
{
Rect r;
r.p0.x = min(min(p0.x, bezier_pp0.x), min(p1.x, bezier_pp1.x));
r.p0.y = min(min(p0.y, bezier_pp0.y), min(p1.y, bezier_pp1.y));
r.p1.x = max(max(p0.x, bezier_pp0.x), max(p1.x, bezier_pp1.x));
r.p1.y = max(max(p0.y, bezier_pp0.y), max(p1.y, bezier_pp1.y));
return r;
}
void Contour::transform(const Rect &from, const Rect &to) {
Vector s( (to.p1.x - to.p0.x)/(from.p1.x - from.p0.x),
(to.p1.y - to.p0.y)/(from.p1.y - from.p0.y) );
Vector o( to.p0.x - from.p0.x*s.x,
to.p0.y - from.p0.y*s.y );
for(Contour::ChunkList::iterator i = chunks.begin(); i != chunks.end(); ++i) {
i->p1 = i->p1*s + o;
i->t0 = i->t0*s;
i->t1 = i->t1*s;
}
}
void Contour::to_polyspan(Polyspan &polyspan) const {
polyspan.move_to(0.0, 0.0);
Vector p0;
for(Contour::ChunkList::const_iterator i = chunks.begin(); i != chunks.end(); ++i) {
switch(i->type) {
case Contour::CLOSE:
polyspan.close();
break;
case Contour::MOVE:
polyspan.move_to(i->p1.x, i->p1.y);
break;
case Contour::LINE:
polyspan.line_to(i->p1.x, i->p1.y);
break;
case Contour::CONIC: {
Vector center;
Real radius = 0.0;
Real radians0 = 0.0;
Real radians1 = 0.0;
if (conic_convert(p0, i->p1, i->t0, center, radius, radians0, radians1)) {
// TODO: fix bugs
Vector pp0( center.x + 2.0*radius*cos(0.5*(radians0 + radians1)),
center.y + 2.0*radius*sin(0.5*(radians0 + radians1)) );
polyspan.conic_to(pp0.x, pp0.y, i->p1.x, i->p1.y);
} else {
polyspan.line_to(i->p1.x, i->p1.y);
}
}
break;
case Contour::CUBIC: {
Vector pp0, pp1;
cubic_convert(p0, i->p1, i->t0, i->t1, pp0, pp1);
polyspan.cubic_to(pp0.x, pp0.y, pp1.x, pp1.y, i->p1.x, i->p1.y);
}
break;
default:
break;
}
p0 = i->p1;
}
}