Blob Blame Raw


//Toonz includes
#include "tgeometry.h"
#include "tpalette.h"
#include "tstroke.h"
#include "tregion.h"
#include "tcolorutils.h"
#include "trasterimage.h"
#include "ttoonzimage.h"
#include "trop.h"
#include "trop_borders.h"
#include "tstrokeutil.h"

//template includes
#define INCLUDE_HPP

//tcg includes
#include "tcg_wrap.h"
#include "tcg/tcg_vertex.h"
#include "tcg/tcg_edge.h"
#include "tcg/tcg_face.h"
#include "tcg/tcg_mesh.h"
#include "tcg/tcg_hash.h"
#include "tcg/tcg_polylineops.h"
#include "tcg/tcg_sequence_ops.h"
#include "tcg/tcg_cyclic.h"

//Toonz includes
#include "../common/trop/raster_edge_evaluator.hpp"

#undef INCLUDE_HPP

//STL includes
#include <set>

#include "toonz/tcenterlinevectorizer.h"

//************************************************************************
//    Local namespace stuff
//************************************************************************

namespace
{

//===========================================================
//    Colors stuff
//===========================================================

template <typename Pix>
Pix transparent();

template <>
inline TPixel32 transparent<TPixel32>() { return TPixel32::Transparent; }
template <>
inline TPixelGR16 transparent<TPixelGR16>() { return TPixelGR16::Black; }

//===========================================================
//    Mesh stuff
//===========================================================

class Edge : public tcg::Edge
{
	TPoint m_dirs[2];
	TStroke *m_s;

public:
	Edge() : tcg::Edge(), m_s(0) {}
	Edge(int v1, const TPoint &dir1, int v2, const TPoint &dir2)
		: tcg::Edge(v1, v2), m_s(0) { m_dirs[0] = dir1, m_dirs[1] = dir2; }

	const TPoint &direction(int i) const { return m_dirs[i]; }
	TPoint &direction(int i) { return m_dirs[i]; }

	const TStroke *stroke() const { return m_s; }
	void setStroke(TStroke *s) { m_s = s; }
};

//-------------------------------------------------------------------

typedef tcg::Mesh<tcg::Vertex<TPoint>, Edge, tcg::Face> LocalMesh;

//-------------------------------------------------------------------

int hashPoint(const TPoint &point)
{
	return point.x ^ point.y;
}

typedef int (*PointHashType)(const TPoint &);

//-------------------------------------------------------------------

size_t hashStroke(const TStroke *stroke)
{
	return (size_t)stroke;
}

typedef size_t (*StrokeHashType)(const TStroke *);

//===========================================================
//    Vertex Adjustment
//===========================================================

struct Sums {
	double m_sums_x, m_sums_y;
	double m_sums2_x, m_sums2_y;
	double m_sums_xy;
};

//-------------------------------------------------------------------

struct SumsBuilder {
	const std::vector<double> &m_sums_x, &m_sums_y, &m_sums2_x, &m_sums2_y, &m_sums_xy;

	SumsBuilder(const std::vector<double> &sums_x, const std::vector<double> &sums_y,
				const std::vector<double> &sums2_x, const std::vector<double> &sums2_y,
				const std::vector<double> &sums_xy)
		: m_sums_x(sums_x), m_sums_y(sums_y), m_sums2_x(sums2_x), m_sums2_y(sums2_y), m_sums_xy(sums_xy)
	{
	}

	void build(Sums &sums, int idx0, int idx1) const
	{
		sums.m_sums_x = m_sums_x[idx1] - m_sums_x[idx0];
		sums.m_sums_y = m_sums_y[idx1] - m_sums_y[idx0];
		sums.m_sums2_x = m_sums2_x[idx1] - m_sums2_x[idx0];
		sums.m_sums2_y = m_sums2_y[idx1] - m_sums2_y[idx0];
		sums.m_sums_xy = m_sums_xy[idx1] - m_sums_xy[idx0];
	}
};

//-------------------------------------------------------------------

template <typename P1_type, typename P2_type>
void adjustVertex(const TPointD &origin, TPointD &point,
				  P1_type p0, Sums &sums0, int n0, P2_type p1, Sums &sums1, int n1)
{
	//Find the 2 best-fit lines
	TPointD v0, v1;

	tcg::point_ops::bestFit(p0, v0,
							sums0.m_sums_x, sums0.m_sums_y, sums0.m_sums2_x, sums0.m_sums2_y, sums0.m_sums_xy, n0);

	tcg::point_ops::bestFit(p1, v1,
							sums1.m_sums_x, sums1.m_sums_y, sums1.m_sums2_x, sums1.m_sums2_y, sums1.m_sums_xy, n1);

	//Get the intersecting point
	double s, t;
	tcg::point_ops::intersectionCoords(p0, v0, p1, v1, s, t, 1e-3);

	if (s == tcg::numeric_ops::NaN<double>())
		return;

	//Adjust vertex - inside a 0.5 radius disc
	TPointD newPoint(origin + p0 + s * v0), diff(newPoint - point);

	double distance = norm(diff);
	if (distance < 0.5)
		point = newPoint;
	else
		point += (0.5 / distance) * diff;
}

//-------------------------------------------------------------------

void adjustVertices(const TPointD &origin,
					std::vector<TPointD> &points, const std::vector<int> &indices,
					const std::vector<double> &sums_x, const std::vector<double> &sums_y,
					const std::vector<double> &sums2_x, const std::vector<double> &sums2_y,
					const std::vector<double> &sums_xy)
{
	int i, last = points.size() - 1;

	SumsBuilder sumsBuilder(sums_x, sums_y, sums2_x, sums2_y, sums_xy);
	Sums sums0, sums1;
	int prev0, prev1, next0, next1;

	TPointD a0, a1;

	if (points.front() == points.back()) {
		prev0 = indices[last - 1] - 1, prev1 = indices[last], next0 = indices[0] - 1, next1 = indices[1];

		sumsBuilder.build(sums0, prev0, prev1);
		sumsBuilder.build(sums1, next0, next1);

		adjustVertex<TPointD &, TPointD &>(
			origin, points[0],
			a0, sums0, prev1 - prev0,
			a1, sums1, next1 - next0);

		points[last] = points[0];

		for (i = 1; i < last; ++i) {
			prev0 = indices[i - 1] - 1, prev1 = indices[i], next0 = indices[i] - 1, next1 = indices[i + 1];

			sumsBuilder.build(sums0, prev0, prev1);
			sumsBuilder.build(sums1, next0, next1);

			adjustVertex<TPointD &, TPointD &>(
				origin, points[i],
				a0, sums0, prev1 - prev0,
				a1, sums1, next1 - next0);
		}
	} else {
		prev0 = indices[0], prev1 = indices[1], next0 = indices[1] - 1, next1 = indices[2];

		sumsBuilder.build(sums0, prev0, prev1);
		sumsBuilder.build(sums1, next0, next1);

		a0 = points[0];

		adjustVertex<const TPointD &, TPointD &>(
			origin, points[1],
			a0, sums0, prev1 - prev0 + 1,
			a1, sums1, next1 - next0);

		int end = last - 1;
		for (i = 2; i < end; ++i) {
			prev0 = indices[i - 1] - 1, prev1 = indices[i], next0 = indices[i] - 1, next1 = indices[i + 1];

			sumsBuilder.build(sums0, prev0, prev1);
			sumsBuilder.build(sums1, next0, next1);

			adjustVertex<TPointD &, TPointD &>(
				origin, points[i],
				a0, sums0, prev1 - prev0,
				a1, sums1, next1 - next0);
		}

		prev0 = indices[end - 1], prev1 = indices[end], next0 = indices[end] - 1, next1 = indices[last];

		sumsBuilder.build(sums0, prev0, prev1);
		sumsBuilder.build(sums1, next0, next1);

		a1 = points[last];

		adjustVertex<const TPointD &, TPointD &>(
			origin, points[1],
			a1, sums1, next1 - next0,
			a0, sums0, prev1 - prev0);
	}
}

//************************************************************************
//    Borders Reader declaration
//************************************************************************

template <typename RanIt>
class PolylineReader
{
	const NewOutlineConfiguration &m_conf;
	double m_adherenceTol, m_angleTol, m_relativeTol, m_mergeTol;

	TVectorImageP m_vi;

	std::vector<TPointD> m_points;
	std::vector<int> m_indices;

	const RasterEdgeEvaluator<RanIt> *m_eval;

public:
	PolylineReader(TVectorImageP vi, const NewOutlineConfiguration &conf)
		: m_vi(vi), m_conf(conf), m_adherenceTol(2.0 * (1.0 - m_conf.m_adherenceTol)), m_angleTol(cos(TConsts::pi * m_conf.m_angleTol)), m_relativeTol(conf.m_relativeTol), m_mergeTol(m_conf.m_mergeTol) {}

	void setEvaluator(const RasterEdgeEvaluator<RanIt> *eval) { m_eval = eval; }

	void openContainer(const RanIt &it);
	void addElement(const RanIt &it);
	void openContainer(const TPoint &p) { addElement(p); }
	void addElement(const TPoint &p) { m_points.push_back(TPointD(p.x, p.y)); }
	void closeContainer();
};

//************************************************************************
//    Borders Reader declaration
//************************************************************************

template <typename Pix>
class BordersReader : public TRop::borders::BordersReader
{
public:
	typedef Pix pixel_type;

	typedef TPoint point_type;
	typedef tcg::hash<TPoint, int, PointHashType> points_hash;

	typedef typename std::pair<pixel_type, pixel_type> stroke_colors_type;
	typedef typename tcg::hash<const TStroke *, stroke_colors_type, StrokeHashType> stroke_colors_hash;

	typedef typename std::vector<TPoint>::iterator point_iterator;
	typedef typename tcg::cyclic_iterator<point_iterator> cyclic_point_iterator;

private:
	const TRasterPT<pixel_type> &m_ras;
	int m_lx, m_ly, m_wrap;

	LocalMesh *m_mesh;
	PolylineReader<point_iterator> m_polylineReader;
	PolylineReader<cyclic_point_iterator> m_loopReader;
	TVectorImageP m_vi;

	points_hash m_vHash;

	pixel_type m_innerColor, m_outerColor;
	stroke_colors_hash m_scHash;

	//Current data
	TPoint m_pos;
	pixel_type *m_pix;
	std::vector<TPoint> m_points;

	//Last vertex data
	TPoint m_dir;
	int m_vIdx;
	int m_nDirections;

	//First vertex data
	TPoint m_firstPos, m_firstDir, m_firstOppDir;
	int m_firstVIdx;
	int m_firstNDirections;
	std::vector<TPoint> m_firstPoints;

public:
	BordersReader(const TRasterPT<pixel_type> &ras, LocalMesh *mesh, TVectorImageP vi,
				  const NewOutlineConfiguration &conf)
		: m_mesh(mesh), m_polylineReader(vi, conf), m_loopReader(vi, conf), m_vi(vi), m_vHash(&hashPoint), m_scHash(&hashStroke), m_ras(ras), m_lx(ras->getLx()), m_ly(ras->getLy()), m_wrap(ras->getWrap()) {}

	void openContainer(const TPoint &pos, const TPoint &dir,
					   const pixel_type &innerColor, const pixel_type &outerColor);
	void addElement(const TPoint &pos, const TPoint &dir, const pixel_type &outerColor);
	void closeContainer();

	int surroundingEdges();

	int touchVertex(const TPoint &pos);
	void touchEdge(int v0, const TPoint &d0, int nd0, int v1, const TPoint &d1, int nd1);

	const stroke_colors_hash &scHash() const { return m_scHash; }
};

} //namespace

//************************************************************************
//    BordersReader implementation
//************************************************************************

template <typename Pix>
int ::BordersReader<Pix>::surroundingEdges()
{
	static const Pix transp(transparent<Pix>());

	Pix ll((m_pos.x > 0 && m_pos.y > 0) ? *(m_pix - m_wrap - 1) : transp);
	Pix lr((m_pos.x < m_lx && m_pos.y > 0) ? *(m_pix - m_wrap) : transp);
	Pix ul((m_pos.x > 0 && m_pos.y < m_ly) ? *(m_pix - 1) : transp);
	Pix ur((m_pos.x < m_lx && m_pos.y < m_ly) ? *(m_pix) : transp);

	if (ll == ur || lr == ul)
		return 2;

	int nEquals = (int)(ll == lr) + (int)(lr == ur) + (int)(ur == ul) + (int)(ul == ll);
	return 4 - nEquals;
}

//-------------------------------------------------------------------

template <typename Pix>
int ::BordersReader<Pix>::touchVertex(const TPoint &pos)
{
	points_hash::iterator it = m_vHash.find(pos);
	if (it == m_vHash.end())
		//No vertex found, add it now.
		it = m_vHash.insert(m_pos, m_mesh->addVertex(LocalMesh::vertex_type(pos)));

	return it->m_val;
}

//-------------------------------------------------------------------

template <typename Pix>
void ::BordersReader<Pix>::touchEdge(int v0, const TPoint &d0, int nd0, int v1, const TPoint &d1, int nd1)
{
	typedef tcg::vertex_traits<LocalMesh::vertex_type>::edges_const_iterator edge_const_it;

	//Ensure that an associated edge is present, in case it should
	const LocalMesh::vertex_type &vx0 = m_mesh->vertex(v0);
	const LocalMesh::vertex_type &vx1 = m_mesh->vertex(v1);

	//Peek each vertex edge, for the one with the right direction
	int e;

	edge_const_it it, end = vx1.edgesEnd();
	for (it = vx1.edgesBegin(); it != end; ++it) {
		Edge &ed = m_mesh->edge(*it);
		int side = (int)(ed.vertex(1) == v1);

		if (ed.direction(side) == d1) {
			e = ed.getIndex();
			break;
		}
	}

	//If none was found, the edge must be added
	if (it == end) {
		e = m_mesh->addEdge(Edge(v0, d0, v1, d1));

		//Also, insert it in the output vector image
		if (m_points.size() == 2) {
			m_polylineReader.openContainer(m_points[0]);
			m_polylineReader.addElement(m_points[1]);
			m_polylineReader.closeContainer();
		} else {
			if (m_points.front() == m_points.back()) {
				point_iterator b = m_points.begin(), e = m_points.end() - 1;
				cyclic_point_iterator beginC(b, b, e, 0), endC(b + 1, b, e, 1);

				RasterEdgeEvaluator<cyclic_point_iterator> eval(
					beginC - 1, endC + 1, 1.0, (std::numeric_limits<double>::max)());
				m_loopReader.setEvaluator(&eval);

				tcg::sequence_ops::minimalPath(beginC, endC, eval, m_loopReader);
			} else {
				RasterEdgeEvaluator<point_iterator> eval(
					m_points.begin(), m_points.end(), 1.0, (std::numeric_limits<double>::max)());
				m_polylineReader.setEvaluator(&eval);

				tcg::sequence_ops::minimalPath(m_points.begin(), m_points.end(), eval, m_polylineReader);
			}
		}

		Edge &ed = m_mesh->edge(e);
		ed.setStroke(m_vi->getStroke(m_vi->getStrokeCount() - 1));

		//Also, associate the extracted colors to the built stroke.
		stroke_colors_type &colors = m_scHash[ed.stroke()];
		colors.first = m_outerColor;
		colors.second = m_innerColor;
	}

	//Finally, if the number of each vertex's incident edges has been reached,
	//erase the corresponding hash entry.
	/*{
    if(nd0 == vx0.edgesCount())
      m_vHash.erase(vx0.P());

    if(nd1 == vx1.edgesCount())
      m_vHash.erase(vx1.P());
  }*/
}

//-------------------------------------------------------------------

template <typename Pix>
void ::BordersReader<Pix>::openContainer(const TPoint &pos, const TPoint &dir,
										 const pixel_type &innerColor, const pixel_type &outerColor)
{
	//Store the associated color if not already present
	m_innerColor = innerColor;
	m_outerColor = outerColor;

	//Build the initial pixel
	m_pos = pos;
	m_pix = m_ras->pixels(0) + m_ras->getWrap() * m_pos.y + m_pos.x;
	m_points.push_back(m_pos);

	m_dir = dir;
	m_vIdx = -1;
	m_nDirections = surroundingEdges();

	m_firstPos = m_pos;
	m_firstDir = m_dir;
	m_firstVIdx = -1;
	m_firstNDirections = m_nDirections;
	m_firstOppDir = TPoint(1, 0);

	if (m_nDirections > 2) {
		//Found mesh vertex. Retrieve the associated vertex
		m_vIdx = touchVertex(m_pos);
		m_firstVIdx = m_vIdx;
		m_firstPoints = m_points;
	}
}

//-------------------------------------------------------------------

template <typename Pix>
void ::BordersReader<Pix>::addElement(const TPoint &pos, const TPoint &dir, const Pix &outerColor)
{
	//Build opposite direction
	bool horizontal = (pos.y == m_pos.y);
	TPoint oppDir = horizontal ? TPoint((pos.x > m_pos.x) ? -1 : 1, 0)
							   : TPoint(0, (pos.y > m_pos.y) ? -1 : 1);

	//Update position
	m_pix += horizontal ? (pos.x - m_pos.x) : (pos.y - m_pos.y) * m_wrap;
	m_pos = pos;
	m_points.push_back(m_pos);

	//Check the new pos
	int nDirections = surroundingEdges();
	if (nDirections > 2) {
		//Found mesh vertex. First, check the hash for an associated vertex
		int vIdx = touchVertex(m_pos);

		//Ensure that an associated edge is present, in case it should
		if (m_vIdx >= 0)
			touchEdge(m_vIdx, m_dir, m_nDirections, vIdx, oppDir, nDirections);
		else {
			m_firstPos = m_pos;
			m_firstDir = dir;
			m_firstOppDir = oppDir;
			m_firstVIdx = vIdx;
			m_firstNDirections = nDirections;
			m_firstPoints = m_points;
		}

		m_dir = dir;
		m_vIdx = vIdx;
		m_nDirections = nDirections;
		m_outerColor = outerColor;

		m_points.clear();
		m_points.push_back(m_pos);
	}
}

//-------------------------------------------------------------------

template <typename Pix>
void ::BordersReader<Pix>::closeContainer()
{
	//If no vertex was found, build one on the first position.
	if (m_firstVIdx < 0) {
		//Add a vertex at the first position.
		m_firstVIdx = m_vIdx = touchVertex(m_firstPos);
		m_dir = m_firstDir;
		m_nDirections = m_firstNDirections;
		m_firstPoints.push_back(m_firstPos);
	}

	//Connect the last vertex to the first.
	m_points.insert(m_points.end(), m_firstPoints.begin(), m_firstPoints.end());
	touchEdge(m_vIdx, m_dir, m_nDirections, m_firstVIdx, m_firstOppDir, m_firstNDirections);

	m_points.clear();
	m_firstPoints.clear();
}

//===================================================================

template <typename RanIt>
void ::PolylineReader<RanIt>::openContainer(const RanIt &it)
{
	const TPoint &p = *it;
	m_points.push_back(TPointD(p.x, p.y));
	m_indices.push_back(it - m_eval->begin());
}

//-------------------------------------------------------------------

template <typename RanIt>
void ::PolylineReader<RanIt>::addElement(const RanIt &it)
{
	const TPoint &p = *it;
	m_points.push_back(TPointD(p.x, p.y));
	m_indices.push_back(it - m_eval->begin());
}

//-------------------------------------------------------------------

template <typename RanIt>
void ::PolylineReader<RanIt>::closeContainer()
{
	if (!m_indices.empty()) {
		const TPoint &origI(*m_eval->begin());
		TPointD origin(origI.x, origI.y);

		::adjustVertices(origin, m_points, m_indices,
						 m_eval->sums_x(), m_eval->sums_y(),
						 m_eval->sums2_x(), m_eval->sums2_y(),
						 m_eval->sums_xy());
	}

	std::vector<TThickPoint> cps;
	polylineToQuadratics(m_points, cps, m_adherenceTol, m_angleTol,
						 m_relativeTol, 0.75, m_mergeTol);

	m_vi->addStroke(new TStroke(cps));

	m_points.clear();
	m_indices.clear();
}

//************************************************************************
//    Palette functions
//************************************************************************

namespace
{

void discretizeColors(TRaster32P &ras, TPalette *palette, int nColors, TPixel32 transparentColor)
{
	//Extract the palette
	std::set<TPixel32> colors;
	TColorUtils::buildPalette(colors, ras, nColors);
	colors.erase(TPixel::Black); //Black is automatically inserted by TPalette's constructor

	std::set<TPixel32>::const_iterator it = colors.begin();
	for (; it != colors.end(); ++it)
		palette->getPage(0)->addStyle(*it);

	//Flatten ras to the specified palette
	TPixel32 *pix, *line, *lineEnd;
	int y, lx = ras->getLx(), ly = ras->getLy();
	for (y = 0; y < ly; ++y) {
		line = ras->pixels(y), lineEnd = line + lx;
		for (pix = line; pix < lineEnd; ++pix)
			*pix = (*pix == transparentColor) ? TPixel32::Transparent : palette->getStyle(palette->getClosestStyle(*pix))->getMainColor();
	}
}

//===================================================================

void copyCM(TRasterGR16P &dst, const TRasterCM32P &src, int toneTol)
{
	assert(dst->getLx() == src->getLx() && dst->getLy() == src->getLy());

	int y, lx = src->getLx(), ly = src->getLy();
	TPixelCM32 *pixIn, *lineInEnd;
	TPixelGR16 *pixOut;
	for (y = 0; y < ly; ++y) {
		pixIn = src->pixels(y), lineInEnd = pixIn + lx;
		pixOut = dst->pixels(y);
		for (; pixIn < lineInEnd; ++pixIn, ++pixOut)
			pixOut->value = (pixIn->getTone() < toneTol) ? pixIn->getInk() : pixIn->getPaint();
	}
}

//===================================================================

typedef BordersReader<TPixel32>::stroke_colors_type stroke_colors_typeRGBM;
typedef BordersReader<TPixel32>::stroke_colors_hash stroke_colors_hashRGBM;

typedef BordersReader<TPixelGR16>::stroke_colors_type stroke_colors_typeCM;
typedef BordersReader<TPixelGR16>::stroke_colors_hash stroke_colors_hashCM;

//===================================================================

void buildColorsRGBM(TRegion *r, const stroke_colors_hashRGBM &scHash, const TPaletteP palette)
{
	//Build r's color
	UINT i, edgeCount = r->getEdgeCount();
	for (i = 0; i < edgeCount; ++i) {
		TEdge *ed = r->getEdge(i);

		stroke_colors_hashRGBM::const_iterator it = scHash.find(ed->m_s);
		if (it == scHash.end())
			continue;

		const stroke_colors_typeRGBM &colors = it->m_val;

		int style;
		if (ed->m_w0 < ed->m_w1) {
			style = palette->getClosestStyle(colors.first);
			ed->setStyle(style);
			ed->m_s->setStyle(style ? style : palette->getClosestStyle(colors.second));
		} else {
			style = palette->getClosestStyle(colors.second);
			ed->setStyle(style);
			ed->m_s->setStyle(style ? style : palette->getClosestStyle(colors.first));
		}
	}

	//Build the color for its sub-regions
	int j, rCount = r->getSubregionCount();
	for (j = 0; j < rCount; ++j)
		buildColorsRGBM(r->getSubregion(j), scHash, palette);
}

//-------------------------------------------------------------------

void buildColorsRGBM(TVectorImageP vi, const stroke_colors_hashRGBM &scHash)
{
	//For every region, find its color
	int i, rCount = vi->getRegionCount();
	for (i = 0; i < rCount; ++i)
		buildColorsRGBM(vi->getRegion(i), scHash, vi->getPalette());
}

//-------------------------------------------------------------------

void buildColorsCM(TRegion *r, const stroke_colors_hashCM &scHash)
{
	//Build r's color
	UINT i, edgeCount = r->getEdgeCount();
	for (i = 0; i < edgeCount; ++i) {
		TEdge *ed = r->getEdge(i);

		stroke_colors_hashCM::const_iterator it = scHash.find(ed->m_s);
		if (it == scHash.end())
			continue;

		const stroke_colors_typeCM &colors = it->m_val;
		if (ed->m_w0 < ed->m_w1)
			ed->setStyle(colors.first.value);
		else
			ed->setStyle(colors.second.value);

		ed->m_s->setStyle(colors.first.value ? colors.first.value : colors.second.value);
	}

	//Build the color for its sub-regions
	int j, rCount = r->getSubregionCount();
	for (j = 0; j < rCount; ++j)
		buildColorsCM(r->getSubregion(j), scHash);
}

//-------------------------------------------------------------------

void buildColorsCM(TVectorImageP vi, const stroke_colors_hashCM &scHash)
{
	//For every region, find its color
	int i, rCount = vi->getRegionCount();
	for (i = 0; i < rCount; ++i)
		buildColorsCM(vi->getRegion(i), scHash);
}

} //namespace

//************************************************************************
//    Main functions
//************************************************************************

namespace
{

void outlineVectorize(TVectorImageP &vi, const TRasterImageP &ri,
					  const NewOutlineConfiguration &conf, TPalette *palette)
{
	//Make a copy of ri's raster - a 32-bit raster
	TRasterP ras(ri->getRaster());
	TRaster32P ras32(ras->getSize());

	TRop::copy(ras32, ras);

	//Build palette color and discretize the raster
	discretizeColors(ras32, palette, conf.m_maxColors, conf.m_transparentColor);

	//Perform despeckling
	if (conf.m_despeckling > 0)
		TRop::majorityDespeckle(ras32, conf.m_despeckling);

	//Examinate the discretized raster. Build a mesh structure representing the image's
	//colors geometry. Build strokes as mesh edges are extracted.
	LocalMesh mesh;
	BordersReader<TPixel32> reader(ras32, &mesh, vi, conf);

	TRop::borders::readBorders_simple(ras32, reader, false);

	//Build regions
	vi->transform(conf.m_affine);
	vi->setAutocloseTolerance(-100.0);
	vi->findRegions();

	if (!conf.m_leaveUnpainted)
		//Finally, build region colors.
		buildColorsRGBM(vi, reader.scHash());
}

//-------------------------------------------------------------------

void outlineVectorize(TVectorImageP &vi, const TToonzImageP &ti,
					  const NewOutlineConfiguration &conf, TPalette *palette)
{
	TRasterCM32P ras(ti->getRaster());
	TRasterGR16P rasGR16(ras->getSize());

	::copyCM(rasGR16, ras, conf.m_toneTol);

	//Perform despeckling
	if (conf.m_despeckling > 0)
		TRop::majorityDespeckle(rasGR16, conf.m_despeckling);

	LocalMesh mesh;
	BordersReader<TPixelGR16> reader(rasGR16, &mesh, vi, conf);

	TRop::borders::readBorders_simple(rasGR16, reader, TPixelGR16::Black, false);

	vi->transform(conf.m_affine);
	vi->setAutocloseTolerance(-100.0);
	vi->findRegions();

	if (!conf.m_leaveUnpainted)
		buildColorsCM(vi, reader.scHash());
}

} //namespace

//-------------------------------------------------------------------

TVectorImageP VectorizerCore::newOutlineVectorize(
	const TImageP &image, const NewOutlineConfiguration &conf, TPalette *palette)
{
	TVectorImageP output(new TVectorImage);
	output->setPalette(palette);

	TRasterImageP ri(image);
	TToonzImageP ti(image);

	//Deal with palette (observe that if image is colormap, the input palette is directly copied to output)
	if (ri)
		::outlineVectorize(output, ri, conf, palette);
	else if (ti)
		::outlineVectorize(output, ti, conf, palette);
	else
		assert(false);

	return output;
}